# Atomistic simulations reveal modality of IHF-DNA <br> binding 

George D Watson • S Yoshua • M C Leake • A Noy

Department of Physics • University of York • Y010 5DD george.watson@york.ac.uk • https://georgewatson.me

## Integration host factor (IHF)

> Prokaryotic nucleoid-associated protein
> Functional analogue of histones
> Bends DNA by $\sim 160^{\circ}$
> Binds specifically by indirect readout
> IHF \& HU regulate around 120 E. coli genes [1]
> Stabilises biofilms [2]


IHF binds DNA in 3 substates

> "Unwrapped" state
$>\sim 60^{\circ}$ bend
> Bending within range for naked DNA
> The A-tract makes a single contact with IHF
> Highest free energy
"Half wrapped" state < $\sim 120^{\circ}$ bend < Novel observation confirms < existing FRET data [3] IHF binds only the A-tract to one side of the binding site

> "Fully wrapped" state
> ~160 ${ }^{\circ}$ bend
> Known from crystal structure
DNA binds to both sides of the protein
> Lowest free energy
> Following binding, the DNA-IHF complex progresses downwards through these metastable states


Corresponding peaks appear in the histogram of bend angles across several simulations.
Here, a 2D projection of the trajectories was used for comparison with AFM data.

## IHF can bridge DNA

> A single IHF molecule can bind at least two pieces of DNA, forming a bridge between them
> Bridges constrain DNA structure \& topology
> Could explain why IHF exists at extracellular DNA crossing points in biofilms

> IHF bridges involve nonspecific hydrogen bonding with the DNA backbone
> Umbrella sampling simulations demonstrate that bridging is energetically favourable


## Methods

> Atomistic molecular dynamics simulations using AMBER \$ Explicit \& implicit solvent
> Free-energy calculations using umbrella sampling \& weighted histogram analysis method (WHAM)
> Results agree with measurements from atomic force microscopy (AFM) by S. Yoshua

## References

1. Swinger K K, Rice P A 2004 Curr. Opin. Struct. Biol. 1428
2. Novotny LA et al. 2013 PLoS ONE 8 e67629
3. Connolly M et al. 2018 J. Phys. Chem. B 12211519
